Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Mol Life Sci ; 79(12): 616, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2148708

ABSTRACT

The loss of smell (anosmia) related to SARS-CoV-2 infection is one of the most common symptoms of COVID-19. Olfaction starts in the olfactory epithelium mainly composed of olfactory sensory neurons surrounded by supporting cells called sustentacular cells. It is now clear that the loss of smell is related to the massive infection by SARS-CoV-2 of the sustentacular cells in the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamsters infected with an early circulating SARS-CoV-2 strain harboring the D614G mutation in the spike protein; we show here that rather than being related to a first wave of apoptosis as proposed in previous studies, the innate immune cells play a major role in the destruction of the olfactory epithelium. We observed that while apoptosis remains at a low level in the damaged area of the infected epithelium, the latter is invaded by Iba1+ cells, neutrophils and macrophages. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we could reduce the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease in SARS-CoV-2 infection levels in the olfactory epithelium. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus in the early phase of the SARS-CoV-2 infection.


Subject(s)
COVID-19 , Olfactory Receptor Neurons , Animals , Cricetinae , Neutrophils , SARS-CoV-2 , Anosmia
2.
PLoS Pathog ; 18(9): e1010799, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021983

ABSTRACT

The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Recombinant Fusion Proteins , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Cell Mol Life Sci ; 79(7): 361, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1888837

ABSTRACT

COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , Melatonin , Angiotensin-Converting Enzyme 2 , Animals , Brain/metabolism , Endothelial Cells/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A , SARS-CoV-2
4.
Viruses ; 14(4)2022 04 10.
Article in English | MEDLINE | ID: covidwho-1786079

ABSTRACT

The spread of SARS-CoV-2 variants in the population depends on their ability to anchor the ACE2 receptor in the host cells. Differences in the electrostatic potentials of the spike protein RBD (electropositive/basic) and ACE2 receptor (electronegative/acidic) play a key role in both the rapprochement and the recognition of the coronavirus by the cell receptors. Accordingly, point mutations that result in an increase in electropositively charged residues, e.g., arginine and lysine, especially in the RBD of spike proteins in the SARS-CoV-2 variants, could contribute to their spreading capacity by favoring their recognition by the electronegatively charged ACE2 receptors. All SARS-CoV-2 variants that have been recognized as being highly transmissible, such as the kappa (κ), delta (δ) and omicron (o) variants, which display an enhanced electropositive character in their RBDs associated with a higher number of lysine- or arginine-generating point mutations. Lysine and arginine residues also participate in the enhanced RBD-ACE2 binding affinity of the omicron variant, by creating additional salt bridges with aspartic and glutamic acid residues from ACE2. However, the effects of lysine- and arginine-generating point mutations on infectivity is more contrasted, since the overall binding affinity of omicron RBD for ACE2 apparently results from some epistasis among the whole set of point mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Arginine/genetics , Humans , Lysine/metabolism , Mutation , Point Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Cells ; 11(3)2022 01 20.
Article in English | MEDLINE | ID: covidwho-1643582

ABSTRACT

Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.


Subject(s)
COVID-19/metabolism , Fabaceae/metabolism , Plant Lectins/metabolism , Polysaccharides/metabolism , SARS-CoV-2/metabolism , Viral Envelope/metabolism , COVID-19/epidemiology , COVID-19/virology , Humans , Mannose/metabolism , Protein Binding , SARS-CoV-2/physiology , Virion/metabolism , Virus Internalization
6.
J Pineal Res ; 72(1): e12772, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1443311

ABSTRACT

As the COVID-19 pandemic grows, several therapeutic candidates are being tested or undergoing clinical trials. Although prophylactic vaccination against SARS-CoV-2 infection has been shown to be effective, no definitive treatment exists to date in the event of infection. The rapid spread of infection by SARS-CoV-2 and its variants fully warrants the continued evaluation of drug treatments for COVID-19, especially in the context of repurposing of already available and safe drugs. Here, we explored the therapeutic potential of melatonin and melatonergic compounds in attenuating COVID-19 pathogenesis in mice expressing human ACE2 receptor (K18-hACE2), strongly susceptible to SARS-CoV-2 infection. Daily administration of melatonin, agomelatine, or ramelteon delays the occurrence of severe clinical outcome with improvement of survival, especially with high melatonin dose. Although no changes in most lung inflammatory cytokines are observed, treatment with melatonergic compounds limits the exacerbated local lung production of type I and type III interferons, which is likely associated with the observed improved symptoms in treated mice. The promising results from this preclinical study should encourage studies examining the benefits of repurposing melatonergic drugs to treat COVID-19 and related diseases in humans.


Subject(s)
Acetamides/pharmacology , COVID-19 Drug Treatment , COVID-19 , Indenes/pharmacology , Melatonin/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Viral Load/drug effects
7.
Cells ; 10(7)2021 06 28.
Article in English | MEDLINE | ID: covidwho-1288809

ABSTRACT

Betacoronaviruses, responsible for the "Severe Acute Respiratory Syndrome" (SARS) and the "Middle East Respiratory Syndrome" (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.


Subject(s)
Lectins/pharmacology , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Cyanobacteria/chemistry , Drug Delivery Systems/methods , Fungi/chemistry , Humans , Lectins/isolation & purification , Lectins/therapeutic use , Middle East Respiratory Syndrome Coronavirus/physiology , Plants/chemistry , Protein Binding , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Species Specificity , Virus Internalization/drug effects , COVID-19 Drug Treatment
8.
Transbound Emerg Dis ; 67(6): 2324-2328, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-545814

ABSTRACT

After its first description in Wuhan (China), SARS-CoV-2 the agent of coronavirus disease 2019 (COVID-19) rapidly spread worldwide. Previous studies suggested that pets could be susceptible to SARS-CoV-2. Here, we investigated the putative infection by SARS-CoV-2 in 22 cats and 11 dogs from owners previously infected or suspected of being infected by SARS-CoV-2. For each animal, rectal, nasopharyngeal swabs and serum were taken. Swabs were submitted to RT-qPCR assays targeting 2 genes of SARS-CoV-2. All dogs were tested SARS-CoV-2 negative. One cat was tested positive by RT-qPCR on rectal swab. Nasopharyngeal swabs from this animal were tested negative. This cat showed mild respiratory and digestive signs. Serological analysis confirms the presence of antibodies against the SARS-CoV-2 in both serum samples taken 10 days apart. Genome sequence analysis revealed that the cat SARS-CoV-2 belongs to the phylogenetic clade A2a like most of the French human SARS-CoV-2. This study reports for the first time the natural infection of a cat in France (near Paris) probably through their owners. There is currently no evidence that cats can spread COVID-19 and owners should not abandon their pets or compromise their welfare.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/virology , Cats , Female , France
SELECTION OF CITATIONS
SEARCH DETAIL